Sense Contextualization in a Dependency-Based Compositional Distributional Model

نویسنده

  • Pablo Gamallo
چکیده

Little attention has been paid to distributional compositional methods which employ syntactically structured vector models. As word vectors belonging to different syntactic categories have incompatible syntactic distributions, no trivial compositional operation can be applied to combine them into a new compositional vector. In this article, we generalize the method described by Erk and Padó (2009) by proposing a dependency-base framework that contextualize not only lemmas but also selectional preferences. The main contribution of the article is to expand their model to a fully compositional framework in which syntactic dependencies are put at the core of semantic composition. We claim that semantic composition is mainly driven by syntactic dependencies. Each syntactic dependency generates two new compositional vectors representing the contextualized sense of the two related lemmas. The sequential application of the compositional operations associated to the dependencies results in as many contextualized vectors as lemmas the composite expression contains. At the end of the semantic process, we do not obtain a single compositional vector representing the semantic denotation of the whole composite expression, but one contextualized vector for each lemma of the whole expression. Our method avoids the troublesome high-order tensor representations by defining lemmas and selectional restrictions as first-order tensors (i.e. standard vectors). A corpus-based experiment is performed to both evaluate the quality of the compositional vectors built with our strategy, and to compare them to other approaches on distributional compositional semantics. The experiments show that our dependency-based compositional method performs as (or even better than) the state-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aligning Packed Dependency Trees: a theory of composition for distributional semantics

We present a new framework for compositional distributional semantics in which the distributional contexts of lexemes are expressed in terms of anchored packed dependency trees. We show that these structures have the potential to capture the full sentential contexts of a lexeme and provide a uniform basis for the composition of distributional knowledge in a way that captures both mutual disambi...

متن کامل

From Global to Local Similarities: A Graph-Based Contextualization Method using Distributional Thesauri

After recasting the computation of a distributional thesaurus in a graph-based framework for term similarity, we introduce a new contextualization method that generates, for each term occurrence in a text, a ranked list of terms that are semantically similar and compatible with the given context. The framework is instantiated by the definition of term and context, which we derive from dependenc...

متن کامل

Automatic Identification of Non-compositional Phrases

Non-compositional expressions present a special challenge to NLP applications. We present a method for automatic identification of non-compositional expressions using their statistical properties in a text corpus. Our method is based on the hypothesis that when a phrase is non-composition, its mutual information differs significantly from the mutual informations of phrases obtained by substitut...

متن کامل

Experimental Support for a Categorical Compositional Distributional Model of Meaning

Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (2010) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation...

متن کامل

Distributional Composition using Higher-Order Dependency Vectors

This paper concerns how to apply compositional methods to vectors based on grammatical dependency relation vectors. We demonstrate the potential of a novel approach which uses higher-order grammatical dependency relations as features. We apply the approach to adjective-noun compounds with promising results in the prediction of the vectors for (held-out) ob-

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017